Parametric Analysis of Active Pile Length and Application to Ultimate Lateral Pile Resistance in Sand

Geo-disaster Mitigation Engineering

R. AGLIPAY

Active Pile Length, L_a

Active Pile Length

The **active pile length**, L_a , defined by the pile deformation near the ground surface down to the negligible point along the depth is closely investigated by varying the parameters directly affecting it such as EI_p and μ . Particularly, the factors: pile width, *b*, Young's modulus, E_p , pile length, L_p , and soil shear modulus, μ , in terms of initial void ratio, e_0 , are varied.

Effects on the Active Pile Length by the Following Factors:

$\begin{array}{c} 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 \\ 4 \sqrt{EI} (MN^{0.25} - m^{0.5}) \end{array}$

(1) Pile Stiffness, *El*_p

- Generally, the L_a increases with increase in the *b*.
- For $L_a/L_p < 0.75$, the L_a/L_p for loose and dense sands diverges.
- For $L_a/L_p > 0.75$, the L_a/L_p for loose and dense sands converges.
- Consider $L_a/L_p < 0.75$ to avoid an effect of bottom restraint.
 - With increase in EI_p , the L_a increases
 - For $L_a/L_p < 0.75$, all the data points lie on a line defined by y=2.891x+3.
 - $\sqrt[4]{EI_p}$ is linearly proportional to L_a
 - (2) Pile Length, L_p
 - L_a continues to increase with increasing actual pile length, L_{p_r} until the ratio L_a/L_p becomes less than 0.75.
 - $L_{a_{f}}$ starts to become constant despite increasing $L_{p_{f}}$ if L_{a}/L_{p} reaches 0.75.

(3) Shear Modulus, μ

The active pile length with respect to the characteristic length, $L_{o} = (EI_{p}/\mu)^{0.25}$ for all cases of piles embedded in loose and dense sand with various pile head displacement is linearly proportional.

Application of Active Pile Length

The active pile length, a function of pile stiffness and shear modulus is a key parameter to describe the ultimate side soil resistance for simplified approach

KIYOTA Lab., Institute of Industrial Science, University of Tokyo