

Pullout behavior of square-shaped geocell reinforcement embedded in sand Kelum SENEVIRATHNA

Geo-disaster Mitigation Engineering

Test apparatus, Materials and Methodology

This study investigates the effect of spacing of the transverse members (ST) on the pullout behavior of square-shaped geocell reinforcement (Han, 2014) embedded in the sandy backfill. Seven pullout tests were done with varying ST while keeping the other influencing factors constant (i.e. $H_T=12.5$ mm, $D_{50}=0.64$ mm, $D_C=100\%$ and $\sigma_n=1$ kPa). 2D-DIC analysis (using GOM Correlate 2017) was done by using the digital images recorded during the pullout process.

Results

Fig. 2 - Split-type geocell reinforcement

Fig. 3 - Backfill material (Colored sand No5)

HT – Height of Transverse member (TM) HL – Height of Longitudinal member (LM) **ST** – Spacing of TM **SL** – Spacing of LM **PR** – Pullout resistance **PPR** – Peak pullout resistance **D180** – Displacement of TM at 180mm from front face

Table 1 - Test cases with results

Symbol	Spacing (S⊤)	No. of Transverse members	Pre peak stiffness	Residual pullout resistance	Peak pullout resistance (N/m)	Time at PPR (S)	Failure mode
S360	360mm	2	Very low	High	2450	440	Ductile
S180	180mm	3	Low	High	3038	360	Ductile
S120	120mm	4	Low to modest	Modest to high	3602	280	Intermediate
S90	90mm	5	Modest	Modest	3626	247	Intermediate
S60	60mm	7	Modest to high	Low to modest	3552	200	Intermediate
S30	30mm	13	High	Low	3430	180	Brittle
S15	15mm	25	Very high	Very low	3426	140	Brittle

PR is controlled by the shear resistance

Fig. 6(a) - Deformation of S180 at peak (at 360 S, D180 = 5mm)

KIYOTA Lab., Institute of Industrial Science, University of Tokyo