Geo-disaster Mitigation Engineering

Stabilization of Indonesian expansive soil and its small-strain characteristics using rice straw ash Gumilang NURALAM, Jun KURIMA, Toshihiko KATAGIRI

Expansive soil and binder material

Expansive soil is considered as destructive soil, where it expands its volume rapidly after being submerged in water and shrinks significantly after losing water.

In this research, expansive soil was stabilized with rice straw ash (RSA), which contains high pozzolanic material. The objectives of this study are (1) determining correlation of RSA proportion and curing conditions in terms of unconfined compression strength, $q_{\rm u}$ and stiffness, E_{50} ; (2) obtaining between small-strain characteristics relationship and isotropic stress under unsaturated drained condition.

Fig. 1 Potential damage due to expansive soil Fig. 2 Rice straw

Effect of RSA and curing conditions on $q_{\rm o}$ and E_{50}

Sample preparation procedure :

- Soil mixing RSA4%, RSA6%, and RSA8%
- Reconstituted sample (d=5cm, h=10cm)
- Curing time (T=1, 3, 7, 28 days)
- Subjecting vertical load of 30 kPa 4.

- > Mix design of soil and RSA 6% is the most optimum combination.
- \succ Both $q_{\rm u}$ and E_{50} increase as curing time longer.
- \succ Confining pressure affects on 5-15% increment of $q_{\rm u}$ and E_{50} .
- > Confining pressure effect decreases as curing time longer.

 \geq Applying isotropic pressure (30, 40, 60, 80, 100, 150, 200 kPa, and the unloading scheme) on drained condition. \succ Conducting small-strain cyclic loading (amplitude 0.001% and 11 cycles) and Vs measurements.

\succ Static E₀ and dynamic G₀ increase as pressure is higher due to densification of specimen

 \succ The model prepared by longer curing time has higher stiffness

KIYOTA Lab., Institute of Industrial Science, University of Tokyo